6TH SEMESTER

Sl.no	Course no.	Subject	L	Т	Р	Credit
1	CE601N	PCC3- STRUCTURAL ANALYSIS II	3	1	0	4
2		PCE3-	3	0	0	3
3		PCE4-	3	0	0	3
4		OCE2-	3	0	0	3
5		OCE3-	3	0	0	3
6	IC601N	Entrepreneurship	2	0	0	2
1	CE602N	Sessional- Transportation Engineering Lab	0	0	3	1
2	CE604N	Sessional- STEEL Structures Sessional	0	0	3	1
3	CE606N	Sessional- STRUCTURAL ANALYSIS lab	0	0	3	1
TOTA	L CREDIT					21

Total contact hour= 27

PROFESSIONAL CORE ELLECTIVE III

[CE603N] Transportation Engineering[CE605N] Soil dynamics[CE607N] Modern surveying techniques[CE609N] Airport Planning and Design[CE611N] Bridge engineering

PROFESSIONAL CORE ELLECTIVE IV

[CE613N] Steel Structures-II,

[CE615N] Water Resources Engineering-II

[CE617N] Structural Dynamics

[CE619N] Systems Engineering & Economics

[CE621N] Metal Structure Behaviour

[CE623N] Masonry Structures

OPEN COURSE ELLECTIVE II

[CE625N] Environment Impact Assessment

[CE627N] Operational Research Technique

[CE629N] Rock Mechanics

[CE631N] Environmental Laws and Policy

[CE633N] Value and Ethics in engineering

OPEN COURSE ELLECTIVE III

[CE635N] Remote Sensing & Its Application,

[CE637N] Decision and Risk Analysis

[CE639N] Engineering Materials for Sustainability

[CE641N] Industrial Structure

[CE643N] Construction Technology and Management

CE601N	STRUCTURAL ANALYSIS II	PCC-III	3-1-0	4 Credits
---------------	------------------------	---------	-------	-----------

MODULE	CONTENTS	Hrs
1.	Analysis of fixed beams, continuous beam, simple frames and	12
	redundant frames with and without translation of points.	
	Method of consistent deformation, Strain energy method,	
	Slope deflection method, Moment distribution method.	
2.	Analysis of two hinged arches. Suspension bridges with two	10
	hinged stiffening girder.	
3.	Structural theorems:-Linearity principle of	6
	superposition, virtual work, energy theorems, reciprocal	
	theorems, Muller's Breslau's principles.	
4.	Basics of force and displacement matrix methods for	10
	beams, plane frame (rigid and pin-pointed)	
5.	Influence lines:-Influence lines for propped	10
	cantilevers, continuous beams and two hinged arches	

Course Outcomes: At the end of the course, the students will be able to

CO1	Analyze the reaction forces and design of building frames
CO2	To analyze the arches of various constraints and calculations of forces
CO3	To understand the various procedure for the analysis of beams and plane frames
CO4	To assess the importance and significance of influence line and their applications

Prerequisites:

Structural Analysis I

CE603N	TRANSPORTATION ENGINEERING	PCE-III	3-0-0	3 Credits
				U CI CUILO

MODULE	CONTENTS	Hrs			
1.	Highway development and planning-Classification of roads,	6			
	road development in India, Current road projects in India;				
	highway alignment and project preparation.				
2.	Geometric design of highways-: Introduction; highway cross	12			
	section elements; sight distance, design of horizontal and				
	vertical alignment; Grade compensation				
3.	Traffic engineering & control- Traffic Characteristics, traffic	10			
	engineering studies, traffic flow and capacity, traffic				
	regulation and control; Design of signals, design of road				
	intersections; design of parking facilities; highway lighting;				
	problems				
4.	Design of pavements- Introduction; flexible pavements,	12			
	factors affecting design and performance; stresses in				
	flexible pavements; design of flexible pavements as per				
	IRC; rigid pavements- components and functions; factors				
	affecting design and performance of CC pavements; stresses				
	in rigid pavements; design of concrete pavements as per				
	IRC; problems				
5.	Pavement materials- Materials used in Highway	8			
	Construction- Soils, Stone aggregates, bituminous binders,				
	bituminous paving mixes; Portland cement and cement				
	concrete: desirable properties, tests, requirements for				
	different types of pavements. Problems				

Course Outcomes: At the end of the course, the students will be able to

CO1	carry out surveys involved in planning and highway alignment
CO2	design the geometric elements of highways and expressways
CO3	carry out traffic studies and implement traffic regulation and control measures and intersection design
CO4	characterize pavement materials and design flexible and rigid pavements as per IRC

Prerequisites:

None

CE605N	SOIL DYNAMICS	PCE-III	3-0-0	3 Credits

Pre-requisites: Geotechnical Engineering

Course Outcomes: At the end of the course, the students will be able to

CO1	Acquire knowledge on the various types of dynamic forces acting and propagating through soil
CO2	Understand the mass spring damper system in solving the problems of soil dynamics
CO3	Acquainted with the various laboratory techniques and their working principle to understand the dynamics properties of soil
CO4	An in depth understanding of the liquefaction behaviour of soil.

Course Articulation Matrix:

PO/CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	3	-	-	-	2	-	-	-	2	-
CO2	3	-	-	3	-	-	2	-	-	-	-	-
CO3	-	2	-	2	-	-	-	-	-	3	-	-
CO4	2	-	-	2	3	-	2	-	2	-	-	2

Detailed Syllabus:

MODULE	CONTENTS	Hrs
1.	Principle of soil dynamics and vibration. Basic definitions	8
	related to dynamic analysis of machine foundations.	
	Different types of machines.	
2.	Different types of machine foundations mass spring system.	14
	Vibration of spring mass system with damping (free	
	vibration). Forced vibration: Derivation of expression for	
	forced vibration. Amplitude of deflection magnification	
	factor, frequency ratio, damping, ration graphical repressor	
	amplitude frequency relation for damped forced vibrations.	
	Wave propagation in soil media, vibration Isolation and	
	control. Bulb of pressure concept	
3.	Natural frequency of foundation soil system block	10
	foundation. Degree of freedom of a block foundation.	
	Barkaun's method of design of block foundation. General	
	vibration for design of machine foundation vibration analysis	
	of machine foundation	
4.	Laboratory and in site determination of dynamic properties	8
	of soil. Determination of Mass, spring constant or stiffness	
	and damping. Determination of natural frequency coefficient	
	of elastic uniform compression design criteria for foundation	
	of reciprocating machine. Indian standard code of practice for	

	design of foundation for impact type machine, Reinforcement and construction details.	
5	Liquefaction of sands. Numerical problem related to soil dynamics and machine fluid.	4

Reading:

- Soil Dynamics and Machine Foundation by Swami Saran
- Fundamentals of Soil Dynamics by Braja M. Das.

CE603N MODERN SURVEY	FECHNIQUES PCE-III	3-0-0	3 Credits
----------------------	---------------------------	-------	-----------

Detailed Syllabus:

MODULE	CONTENTS	Hrs
1.	Modern surveying electronic equipments: digital levels, digital theodolites, EDMs, Total stations; Principles, working	6
	and applications; Lasers in surveying.	
2.	Photogrammetric terms; Applications; Type of photographs; Perspective geometry of near vertical and tilted photographs, heights and tilt distortions; Flight planning; Stereoscopy, base lining, floating marks, parallax equation and stereo measurements for height determination; Developments in photogrammetry: analogue, analytical and digital methods; photogrammetric instruments.	12
3.	Introduction- Remote sensing system- data acquisition and processing; Applications; Multi concept in remote sensing. Physical basis of remote sensing- Electro-magnetic radiation (EMR)- nature, nomenclature and radiation laws; Interaction in atmosphere- nature, its effects in various wavelength regions, atmospheric windows; Interaction at ground surface- soils and rocks, vegetation, water, etc.; Geometric basis of interaction. Platform and sensors- Terrestrial, aerial and space platforms; Orbital characteristics of space platforms, sun- and geo- synchronous; Sensor systems- radiometers, optomechanical and push broom sensor; Resolution- spectral, spatial, radiometric and temporal; Data products from various air and spaceborne sensors- aerial photographs, LiDAR, Landsat, SPOT, IRS, ERS, IKONOS, etc. Image interpretation- Elements of interpretation; Manual and digital interpretation; Field verification.	16
4.	Components of GIS- data acquisition, spatial and attribute data, pre-processing, storage and management; Data structures- raster and vector data; GIS analysis functions; Errors and corrections; Data presentation and generation of thematic maps; Applications	08

Course Outcomes: At the end of the course, the students will be able to

CO1	Learn the use of modern survey instruments and their use in surveying
CO2	Assess the importance of photogrammetric survey and its significance

CO3	Learn and apply the concept of remote sensing in geodetic survey
CO4	Understand the concept of GIS in survey

Prerequisites:

Survey

Reading:

• Surveying and Levelling Vol. II by T.P. Kanetkar

CE609N AIRPORT PLANNING AND DESIGN PCE-3	3-0-0	3 Credits
--	-------	-----------

Detailed Syllabus:

MODULE	CONTENTS	Hrs
1.	Aircraft characteristics; Aircraft performance	10
	characteristics: Airport planning and air travel demand	
	forecasting: Airport Site Selection; Geometric Design	
	of the Airfield	
2.	Determination of Runway Capacity and Delay - Taxiway	10
	and Gate Capacity - Holding Aprons - Terminal Aprons -	
	Airport drainage - Function of Airport Passenger and	
	Cargo Terminal	
3.	Design of Air Freight Terminals - Airport access - Airport	10
	Landside	
	planning - Capacity; Air Traffic Management: Navigational	
	aids: ground based systems,	
	satellite based systems	
4.	Air traffic control and surveillance facilities – Airfield	10
	lighting – air traffic management.	

Course Outcomes: At the end of the course, the students will be able to

CO1	Learn the importance of airport planning and design
CO2	Understand the runway capacity and function of airport terminal
CO3	Learn the design of airport freight terminals
CO4	Understand the function of air traffic control

Prerequisites:

Transportation Engineering

Reading:

CE611NBRIDGE ENGINEERINGPCE-33-0-03 Cred	lits
--	------

MODULE	CONTENTS	Hrs
1.	General; classification of bridges, site selection, geometric and hydraulic design consideration	6
2.	Loading standards for highway and railway bridges, general design consideration; optimum spans; Concrete bridges: culverts; Slab, T-beam, box girder bridges, balanced cantilever bridge, cable stayed bridge, extrados bridges; arch bridge;	12
3.	Special requirements for Prestressed Concrete bridges; Steel bridges: plate girder bridge, truss bridge, suspension cable bridge, cable stayed bridge; Substructures: design of piers and abutments, pile and well foundations, bearings and expansion joints, special wearing coats	12
4.	seismic design considerations; Aerodynamic stability considerations; special durability measures; provisions for inspection and maintenance;	10

Course Outcomes: At the end of the course, the students will be able to

CO1	Classify the various types of bridges based on various criteria
CO2	Assess the load on the bridge and its serviceability
CO3	Understand the requirements of a Prestressed concrete bridge
CO4	Understand the seismic design considerations for bridge design

Prerequisites:

Transportation Engineering

CE613N STEEL STRUCTURE II PCE-4 3-0-0 3 Credits

MODULE	CONTENTS	Hrs
1.	Moment Resistant Connections :	12
	i. Eccentric Connections: Bolted Bracket Connections,	
	Bracket Connection-type-I and type-II	
	ii. Welded Bracket Connections	
	iii. Bolted Framed Connections – Seat Connections,	
	Design of Unstiffened seat connection.	
	Stiffened Seat Connection, Beam to Column	
	connection, Beam to Beam Connection.	
	Welded Seat Connections	
2.	Industrial Building :-	12
	i. Roof Truss : Types, Selection of the type of roof truss,	
	General arrangements	
	ii. Load on the roof truss - dead load, live load, snow load,	
	wind load, load combination.	
	iii. Design of purlins	
	IV. Analysis and Design of Root Truss	
	V. Bracings of truss	
	Vi. Design of Gantry Grider. Introduction, Crane Grider,	
	Vertical loads Lateral Loads Longitudinal Load Impact	
	Loads, Design procedure.	
3.	Bridge : Steel foot bridge with rankers and lateral restraining	10
	including end bearings	
	Water Tank : Pressed steal water tank: Introductions, Permissible	
	stresses, Thickness specifications Design procedure, staging for	
	tanks	
4.	Towers : Introduction, transmission line towers, Microwave	8
	towers, design loads, classification, analysis and design of	
	transmission line towers.	
	Tubular Structures : Introduction to tubular structures	

Course Outcomes: At the end of the course, the students will be able to

CO1	In depth understanding of moment resistant connection
CO2	Understand the various types of trusses
CO3	Assess the loading and design of bridges and water tanks
CO4	Analyze the design of towers

Prerequisites:

Steel Structure I

CE615N	WATER RESOURCE	PCE-4	3-0-0	3 Credits
	ENGINEERING II			

MODULE	CONTENTS	Hrs
1.	Irrigation Principles and planning	10
	Definition of Irrigation, development of irrigation in India.	
	Benefits and ill effects of Irrigation. Types of method of irrigation	
	system. quality of irrigation water, water requirements and	
	irrigation scheduling, duty and data & base periods and their	
	relationship, improvements of duty.	
2.	Canal design and layouts, types of canal	10
	Canal alignment –	
	Canal design – Kennedy's Silt theory method, Laceyes regime	
	theory. RangaRaju and Misri Method. Basak Method, Tractive	
	shear approach ,layout of canals. Conveyance losses.	
3.	Diversion head Works, Layout of diversion head works,	8
	Components of head works, Bligh's and lane's theories, Khosla	
	theory, Design of weir & Barrage	
4.	Canal Regulation Works: Different types of regulation	8
	works, Types and Design of falls.	
	Types and design of regulators, Cross regulator, head	
	regulator, canal escapes, canal modulus etc.	
5	Cross – Drainage Works	6
	Types of cross-drainage works and design of aqueducts.	
	River Training Works	
	Meandering of rivers, cut off, spurs, guide banks ,marginal	
	embankment. Channel Improvements	

Course Outcomes: At the end of the course, the students will be able to

CO1	In depth knowledge of irrigation principle and planning
CO2	Understand the canal design and layout
CO3	Assess the various design theories
CO4	Analyze the cross drainage work

Prerequisites:

Water Resources Engineering I

CE617N	STRUCTURAL DYNAMICS	PCE-4	3-0-0	3 Credits
---------------	---------------------	-------	-------	------------------

MODULE	CONTENTS	Hrs
1.	THEORY OF VIBRATIONS	9
	Difference between static loading and dynamic loading – Degree	
	of freedom – idealisation of structure as single degree of freedom,	
	– Formulation of Equations of motion of SDOF system –	
	D'Alemberts principles – effect of damping – free and forced	
	vibration of damped and undamped structures – Response to	
	harmonic and periodic forces.	
2.	Two degree of freedom system – modes of vibrations – formulation	9
	of equations of motion of multi degree of freedom (MDOF) system	
	- Eigen values and Eigen vectors - Response to free and forced	
	vibrations – damped and undamped MDOF system – Modal	
	superposition methods.	
3.	Elements of Engineering Seismology – Causes of Earthquake –	9
	Plate Tectonic theory – Elastic rebound Theory – Characteristic of	
	earthquake – Estimation of earthquake parameters – Magnitude	
	and intensity of earthquakes – Spectral Acceleration.	
4.	Effect of earthquake on different type of structures –	9
	Behaviour of Reinforced Cement Concrete, Steel and	
	Prestressed Concrete Structure under earthquake loading –	
	Pinching effect – Bouchinger Effects – Evaluation of	
	earthquake forces as per IS:1893 – 2002 – Response Spectra	
	– Lessons learnt from past earthquakes.	
5	Causes of damage – Planning considerations / Architectural	9
	concepts as per $IS:4326 - 1993 - Guidelines$ for Earthquake	
	resistant design – Earthquake resistant design for masonry	
	and Reinforced Cement Concrete buildings – Lateral load	
	analysis – Design and detailing as per IS:13920 – 1993	

Course Outcomes: At the end of the course, the students will be able to

CO1	Understand the concept of dynamic vibration of structures
CO2	Assess the behavior of structure under dynamic loading
CO3	Understand the basic dynamic parameters of vibratory and impact forces
CO4	Assess the damage and design considerations for dynamic loads

Prerequisites:

Structural Engineering I

CE619N	SYSTEM	ENGINEERING	AND	PCE-4	3-0-0	3 Credits
	ECONOMI	CS				

MODULE	CONTENTS	Hrs
1.	Introduction to the formulation and solution of	12
	civilengineering problems.Engineering economy,	
	mathematical modeling, and optimization.	
2.	Techniques, including classical optimization, linear and	14
	nonlinearprogramming, network theory, critical path	
	methods, simulation, decision theory	
3.	Dynamic programming applied to a variety of civil	12
	engineering problems.	

Course Outcomes: At the end of the course, the students will be able to

CO1	To understand the formulation and the solution of civil engineering problems
CO2	The importance of mathematical modelling in Civil Engineering
CO3	The application of network theory and other techniques
CO4	The application of dynamic programming to civil engineering problems

Prerequisites:

None

CE621N	METAL STRUCTURE BEHAVIOUR	PCE-4	3-0-0	3 Credits

Detailed Syllabus:

MODULE	CONTENTS	Hrs
1.	Introduction to the design of metal structures;	10
2.	Behavior of members and their connections; and theoretical,	10
	experimental, and practical bases forproportioning members and their connections.	
3.	Metal members under combined loads; connections, welded	10
	and bolted; moment- resistant connections;	

4	Plate girders, conventional behavior, and tension field	10
	action.	

Course Outcomes: At the end of the course, the students will be able to

CO1	To learn the designing of metal structures
CO2	To understand the behavior of structural members and their connections
CO3	To study the behavior of metal members under combined loading
CO4	To understand the stress calculations under various structural joints

Prerequisites:

None

CE623N	MASONRY STRUCTURES	PCE-4	3-0-0	3 Credits
---------------	--------------------	-------	-------	-----------

Detailed Syllabus:

MODULE	CONTENTS	Hrs
1.	Introduction to analysis, design and construction of masonrystructures.	8
2.	Mechanical properties of clay and concrete masonry units, mortar, and grout	8
3.	Compressive, tensile, flexural, and shear behavior of masonry structural components.	8
4	Strength and behavior of unreinforced bearing walls. Detailed design of reinforced masonry beams, columns, structural walls with and without openings	8
5	Complete lateral-force resisting building systems.	8

Course Outcomes: At the end of the course, the students will be able to

CO1	Analyze the design of masonry structures
CO2	To assess the mechanical properties of clay mortar etc.
CO3	To assess the strength behavior of bearing walls
CO4	To analyze the lateral force resisting building system.

Prerequisites:

CE625N	ENVIRONMENT	IMPACT	OCE-2	3-0-0	3 Credits
	ASSESSMENT				

MODULE	CONTENTS	Hrs
1.	Evolution of EIA: Concepts of EIA methodologies,	8
	Screening and scoping;	
2.	Rapid EIA and Comprehensive EIA; GeneralFramework for	8
	Environmental Impact Assessment, Characterization and site	
	assessment.Environmental Risk Analysis	
3.	Definition of Risk, Matrix Method. Checklist method,	12
	Faulttree analysis, Consequence Analysis; Socioeconomic	
	aspects, measures of effectiveness of pollution control	
	activities	
4	Environmental Legislation; Introduction to	14
	EnvironmentalManagement Systems; Environmental	
	Statement - procedures; Environmental Audit: CostBenefit	
	Analysis; Life Cycle Assessment; Resource Balance,	
	Energy Balance & ManagementReview; Operational	
	Control;	
5	Case Studies on EIA.	2

Course Outcomes: At the end of the course, the students will be able to

CO1	Understand the need and importance of EIA
CO2	Understand the need for characterization and site assessment
CO3	gain a knowledge about the cost benefit analysis
CO4	to have a knowledge on the case studies on EIA

Prerequisites:

Environmental Engineering

CE627N	OPERATIONAL	RESEARCH	OCE-II	3-0-0	3 Credits
	TECHNIQUE				

MODULE	CONTENTS	Hrs
1.	Introduction: History of operation research, nature and scope of operations research, allocation.	10
2.	Linear programming: Mathematical formulations of the problem, Graphical solution methods, mathematical solution of L-P problems, matrix formulation of general linear programming.	10
3.	Simplex Method: Algorithm and computational procedures, Two phase Simplex method, Problems of degeneracy, Principles of duality in simplex method, Sensitivity analysis, Transportation problem.	10
4	Game Theory: Introduction, Two persons zero sum games, the maxmini and minimax principles. Integer Programming: Formulation and solution of integer programming problems	10

Course Outcomes: At the end of the course, the students will be able to

CO1	Understand the characteristics of different types of decision-making environments and
	the appropriate decision making approaches and tools to be used in each type
CO2	Generate mathematical formulation of L-P problems using Simplex method, Two
	Phase Simplex method
CO3	Interpret the principle of Dual Simplex And Sensitivity Analysis
CO4	Build and solve Transportation Models and Assignment Models
CO5	Build and solve Integer Programming Problems

Prerequisites:

None

Suggested Reading

- 1. Taha,H A, "Operations Research An Introduction", Sixth Edition, Prentice Hall of India Private Limited, N. Delhi, 2004.
- 2. Hillier, F S, "Operations Research", First Indian Edition, CBS Publishers & Distributors, Delhi, 1994.

CE629NROCK MECHANICSOCE-II3-0-03 Cre	dits
--------------------------------------	------

MODULE	CONTENTS	Hrs
1.	Introduction Brief historical development; Mechanical	10
	nature of rock; Index properties of rocks and rock masses	
	Continuum and discontinue.	
2.	Classification of Rocks Geological and engineering	10
	classification of intact and in situ rocks; Classification of	
	rock mass continuity; RQD, RMR and Q index;	
	Comparison of various systems used in practice.	
3.	Engineering Properties of Rocks and Rock Masses	10
	Mechanical properties of rocks; Stress-strain behavior in	
	compression; Brittle and plastic failures; Engineering	
	behaviourof intact and in situ rocks; Anisotropy,	
	Deformability and elastic modulus;. Permeability.	
4	Shear Strength of Rocks	10
	Triaxial compression test; Failure criteria; Shear strength of	
	discontinuities; Dilatancy; Effective stress ill rocks. In Situ	
	Stress ill Rock and Their Measurement, Nature of primitive	
	stress, Stress measurement.	

Course Outcomes: At the end of the course, the students will be able to

CO1	Distinguish various types of rocks
CO2	Classify the rocks based on various parameters
CO3	assess the stress strain behavior of rock mass
CO4	understand the rock support

Prerequisites:

Geotechnical Engineering I

*Value engineering (syllabus prepared and taught by production engineering department $\)$

CE633NValues And Ethics In EngineeringOCE-II3-0-03 C	redits
--	--------

MODULE	CONTENTS	Hrs
1.	Human Values:Morals, values and Ethics – Integrity –	10
	Work ethic – Service learning – Civic virtue – Respect for	
	others – Living peacefully – Caring – Sharing – Honesty –	
	Courage – Valuing time – Cooperation – Commitment –	
	Empathy – Self confidence – Character – Spirituality –	
	Introduction to Yoga and meditation for professional	
	excellence and stress management.	
2.	Engineering Ethics: Senses of 'Engineering Ethics' –	10
	Variety of moral issues – Types of inquiry – Moral	
	dilemmas – Moral Autonomy – Kohlberg's theory –	
	Gilligan's theory – Consensus and Controversy – Models of	
	professional roles – Theories about right action – Self-	
	interest – Customs and Religion – Uses of Ethical Theories	
3.	ENGINEERING AS SOCIAL EXPERIMENTATION	10
	Engineering as Experimentation – Engineers as responsible	
	Experimenters – Codes of Ethics – A Balanced Outlook on	
	Law.	
4	SAFETY, RESPONSIBILITIES AND RIGHTS	10
	Safety and Risk – Assessment of Safety and Risk – Risk	
	Benefit Analysis and Reducing Risk – Respect for Authority	
	- Collective Bargaining - Confidentiality - Conflicts of	
	Interest – Occupational Crime – Professional Rights –	
	Employee Rights – Intellectual Property Rights (IPR) –	
	Discrimination	
5	GLOBAL ISSUES Multinational Corporations –	8
	Environmental Ethics – Computer Ethics – Weapons	
	Development – Engineers as Managers – Consulting	
	Engineers – Engineers as Expert Witnesses and Advisors –	

Moral Leadership –Code of Conduct – Corporate Social	
Responsibility	

CE631N	ENVIRONMENTAL	LAWS	AND	OCE-II	3-0-0	3 Credits
	POLICY					

MODULE	CONTENTS	Hrs
1.	Overview of environment, nature and eco system, Concept	14
	of laws and policies, Origin of environmental law,	
2.	Introduction to environmentallaws and policies,	12
	Environment and Governance, sustainable development and	
	environment, understanding climate change, carbon	
	crediting, carbon foot print etc.,	
3.	Introduction to tradeand environment. International	14
	environmental laws, Right to Environment as Human Right	
	International Humanitarian Law and Environment,	
	environment and conflicts management, Famous	
	international protocols like Kyoto.	

Course Outcomes: At the end of the course, the students will be able to

CO1	To understand the laws to protect the environment
CO2	To have an in depth understanding of the environmental laws and policies
CO3	To understand the international humanitarian law and other laws
CO4	To gain knowledge about famous international protocols

Prerequisites:

Environmental Engineering

CE635N	REMOTE	SENSING	&	ITS	OCE-III	3-0-0	3 Credits
	APPLICAT	ION					

MODULE	CONTENTS	Hrs
1.	Introduction and definition of Remote sensing Technology	10
	photogrammetry types of photograph geometry of photograph stereophotogrammetry	
	F	
2.	Remote Sensing: stages and success electromagnetic	10
	radiation and Spectrum spectrum signature atmospheric	
	window characteristics of different types in cells images are	
	of platforms orbital parameters of a satellite	
3.	Interpretation of images principles of interpretation of	12
	satellite and area images equipment at 8 week ground truth	
	collection and verification advantages of multi and multi	
	band images	
	Digital satellite data: Digital satellite data products and their	
	characteristics Histogram and its utility enhancement	
	different magnitude of digital satellite data interpretation	
4	Application of Remote sensing applications in water	10
	resource management river morphology of Estimation and	
	forecast snow survey blood joining and damage can land	
	use mapping and monitoring environmental studies urban	
	pollution atmospheric pollution studies environmental	
	science and Highway planning engineering and regional	
	planning natural resources service required to Graphic	
	application	

Course Outcomes: At the end of the course, the students will be able to

C01	To understand the importance of electromagnetic spectrum in Civil survey
CO2	TO assess the remote sensing data acquisition
CO3	To interpret the data obtained for the civil engineering applications
CO4	To analyse the digital image processing

CE637N	DECISION AND RISK ANALYSIS	OCE-3	3-0-0	3 Credits
--------	----------------------------	-------	-------	-----------

MODULE	CONTENTS	Hrs
1.	Development of modern statistical decision theory and	10
	riskanalysis, and application of these concepts in civil	
	engineering design and decision making,	
2.	Bayesian statistical decision theory, decision tree, utility	8
	concepts, and multi-objectivedecision problems;	
3.	Modelling and analysis of uncertainties, practical risk	12
	evaluation, and formulation of risk-based design criteria,	
4	Risk benefit trade-offs, and optimal decisions.	10

Course Outcomes: At the end of the course, the students will be able to

CO1	To understand the importance of risk analysis in Civil Engineering
CO2	To understand the various risk assessment theories
CO3	To assess the formulation of risk based design criteria
CO4	To analyses the benefits of optimal decisions in Civil Engineering

Prerequisites:

None

CE639N	ENGINEERING MATERIALS FOR	OCE-3	3-0-0	3 Credits
	SUSTAINABILITY			

Detailed Syllabus:

MODULE	CONTENTS	Hrs
1.	Environmental impact of materials used in infrastructure	10
	development	

2.	Life-cycle assessment durability and sustainability, material	15
	selection to optimize structural performance such as use of	
	plastic in roads, fly ash in filling, recycled aggregates in	
	construction and renovative chemicals etc.	
3.	Design, evaluation, and production of green construction	15
	materials.	

Course Outcomes: At the end of the course, the students will be able to

CO1	To assess the impact of industrial waste on environment
CO2	To study the materials for sustainable construction
CO3	To understand the importance of using green construction materials

CE641N	INDUSTRIAL STRUCTURES	OCE-3	3-0-0	3 Credits

Detailed Syllabus:

MODULE	CONTENTS	Hrs
1.	Detailed Design of Steel Gantry Girders.	9
	Detailed Design of Portal Frames-Single bay two storey.	
2.	Detailed Design of Gable Structures.	9
	Detailed Design of Knee Brace.	
3.	Detailed Design of Light weight metal structures.	9
	Design of connections-Shear and Flexure Design.	
4	Detailed Design of Steel Bunkers.	9
	Detailed Design of Silos.	
5	Detailed Design of Self Supported Chimneys.	9

Reading:

1. Design of Steel Structures, Arya and Azmani, Nem Chand Brothers, Roorkee, 2004

2. Punmia B.C, Ashok Kr. Jain, Arun Kr. Jain, RCC Designs (Reinforced Concrete Design), 10th Edition, Lakshmi Publishers, 2006.

3. Ramachandra, Design of Steel Structures, 12th Edition, Standard Publishers, 2009

CE643N	CONSTRUCTION TECHNOLOGY	OCE-5	3-0-0	3 Credits
	AND PROJECT MANAGEMENT			

MODULE	CONTENTS	Hrs
1.	Importance of Project Management, Role of Project manager, Stakeholders in construction project, Different types of projects, similarities & dissimilarities in projects	8
2.	Time, Scope & Money, Knowledge areas & Processes involved in construction projects, WBS of a major work, with examples	8
3.	Planning, monitoring & executing, Planning, sequencing, scheduling, Bar Charts, Networks, CPM, PERT, Upgrading, Cash flow diagram, resource levelling & resource allocation	8
4	Crashing of project, Cost Optimization, Invoicing, Preparation of RA bill, Safety in construction, Estimation, Tenders & Contracts.	8
5	Equipment for construction, Construction Finances – decision making, Construction of piles, Construction of Tunnels, Construction of cofferdams.	8

Reading:

- 1. Puerifoy R.L. Construction Planning Equipment & methods.
- 2. Punmia and Khandelwal K.K. Project Planning and Control Laxmi Publ. Delhi.
- 3. Srivatsava, 1998. Management in Construction Industry.
- 4. Antil & Woodh Critical Path Method in Construction Wiley International.
- 5. Mahesh Varma Construction Planning and Equipment Metropolitan Co.